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Abstract. Carrier–phonon interaction in semiconductor quantum dots leads to three classes of phenom-
ena: coherent effects (spectrum reconstruction) due to the nearly-dispersionless LO phonons, incoherent
effects (transitions) induced by acoustical phonons and dressing phenomena, related to non-adiabatic,
sub-picosecond excitation. Polaron spectra, relaxation times and dressing-related decoherence rates are
calculated, in accordance with experiment.

PACS. 68.65.Hb Quantum dots – 63.20.Kr Phonon-electron and phonon-phonon interactions –
03.65.Yz Decoherence; open systems; quantum statistical methods

1 Introduction

The properties of natural atoms have been studied for
decades and are well-known now. There is no principal
obstacle that would prevent one from isolating a single
atom or a group of atoms (or ions) and reducing their
uncontrolled interaction with environment to any degree.
The resulting isolated system may be then manipulated
with great precision e.g. by laser light. In recent years,
the feasibility of this scenario was confirmed experimen-
tally by trapping single ions and linear chains of ions, cou-
pling them in a controlled way to the oscillatory “phonon”
mode of the chain and coherently manipulating this sys-
tem by laser light (for a review, see [1]). In this way the
implementation of the quantum logical operations is pos-
sible [2–5].

A man-made analogue of these atomic systems are
quasi zero-dimensional semiconductor structures, called
quantum dots (QDs) [6]. They may be obtained in dif-
ferent ways, one of which is spontaneous aggregation of
a semiconductor compound which has been epitaxially
grown on a different compound (e.g. InAs on GaAs). Due
to the strain generated by the lattice constant mismatch,
after growing a few atomic layers of InAs the system un-
dergoes the Stransky-Krastanov transition and the uni-
form layer is transformed into a random distribution of
aggregates (self-assembled QDs), whose radius is of sev-
eral tens of nanometers and height may be as low as 2 nm,
lying on a very thin wetting layer of InAs. This is then
capped again with the GaAs (or inserted in a more com-
plicated structure suitable for experimental purpose).
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A carrier localized in a quantum dot has a discrete
spectrum resulting from the effective confinement poten-
tial induced by the band discontinuity between the InAs
island and the surrounding GaAs bulk, strongly modified
by crystal stress [7]. Since the self-assembled InAs/GaAs
dots are usually lens-shaped, the confinement is much
stronger in the growth direction than in the perpendicular
plane. The characteristic energies for the in-plane excita-
tions of electrons are of order of tens of meV. The excited
levels are nearly degenerated, leading to the formation of
shells in the spectrum [8]. Above the discrete spectrum
there is the 2D continuum of wetting layer states and then
the 3D continuum of the GaAs bulk. Because of the simi-
larity of the QD spectra to the atomic ones these quasi-0D
semiconductor systems were called artificial atoms [9,10].
Coherent phenomena occurring in these systems [11–14]
open the possibility for their application in quantum infor-
mation processing using either spin degrees of freedom [15]
or orbital ones [16], or both [17].

There are a few advantages of the artificial quantum
dots over the natural atoms: Their properties are governed
by growth conditions and therefore are relatively flexi-
ble. The stress distribution favors the creation of chains
of coupled dots when one layer is grown over another.
The small inter-level spacing increases the magnetic field
effects, thus supplying another degree of freedom for mod-
ifying the system properties. Using optical excitation and
doping techniques it is possible to populate the dots with
a definite number of carriers, creating charged and neutral
(excitonic) states. Controlled entanglement in such “artifi-
cial molecules” has been demonstrated [18]. The industry-
scale semiconductor technology is well developed, raising
hopes for easy integration of the future QD nano-devices
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with the existing microelectronics. Finally, the technology
of isolating a single dot for investigation [19] and coher-
ent control [20] seems to be more accessible than the ion
trapping techniques.

On the other hand, quantum dots have much more
complicated properties, resulting from anisotropy [21], in-
homogeneous composition [22], crystal stress [7,23], possi-
bly irregular shape and presence of many types of carriers
(electrons and three hole branches for GaAs-type semicon-
ductors). Moreover, they are not isolated systems. They
are embedded in the macroscopic crystal and interacting
with other carriers, crystal defects and lattice excitations.
While the former two kinds of interaction may be elimi-
nated by optimizing the manufacturing conditions, lower-
ing temperature and decreasing the excitation power, the
lattermost is unavoidable.

There are three major mechanisms of carrier-phonon
interaction [24]:

(1) Coulomb interaction with the lattice polarization in-
duced by the relative shift of the positive and negative
sub-lattices of the polar compound, described upon
quantization by longitudinal optical (LO) phonons;

(2) deformation potential coupling describing the band
shifts due to lattice compression, i.e. longitudinal
acoustical (LA) phonons;

(3) Coulomb interaction with piezoelectric field generated
by shear crystal deformation (transversal acoustical,
TA, phonons).

The lattermost effect is weak in InAs/GaAs systems
but may be of more importance for the properties e.g. of
GaN dots [25–27].

One may expect that the carrier-phonon interaction
should lead to transitions between carrier states. It was
predicted theoretically [28,29] that phonon-induced relax-
ation from excited states should be slow due to the bot-
tleneck effect: the trapped carrier wavefunction is local-
ized on approximately 10 lattice constants and high energy
acoustic phonons do not effectively couple to carriers due
to the wavelength mismatch, while optical phonons have
very weak dispersion around k = 0 so that energy con-
servation would require a strictly defined energy distance
between the carrier levels. Experiments on large ensem-
bles of dots show, however, that the carriers relax from
the excited states in a few tens of picoseconds by emit-
ting one [30] or more [31] LO phonons. The cascade re-
laxation rate is limited by the final step, from the lowest
excited to the ground state. The observed LO phonon re-
laxation, apparently contrary to the bottleneck idea, can
be explained by the fact that in the large ensemble of in-
homogeneously sized dots some of them satisfy the energy
conservation [31].

Another manifestation of the carrier-phonon interac-
tion in confined semiconductor systems are the phonon
replicas in the emission and absorption spectra, corre-
sponding to simultaneous photon and phonon absorption
or emission. Such phonon-assisted peaks may be found
both in ensemble [32,33] and single-dot [34] experiments.
These peaks are much stronger than could be expected
on the grounds of the adiabatic theory: the overlap of

the electron and hole wavefunction in the ground state
of the charge-neutral exciton should lead to the cancella-
tion of the polar interaction between the exciton and the
LO phonon [35]. It was shown [36] that non-adiabatic ef-
fects, i.e. carrier transitions between ground and excited
states induced by the lattice dynamics lead to the increase
of the phonon-assisted peak strength in accordance with
experiment.

Apart from these incoherent phonon processes, carrier-
phonon interaction induces also coherent effects. The
far infrared (FIR) magnetospectroscopy of quantum dots
shows distinct anti-crossings of electron [21,37] or exci-
ton [38] levels each time they are separated by a mul-
tiple of the LO phonon energy. Such anti-crossings are
an evidence of the presence of polaron states, i.e. coher-
ent superpositions of carrier and phonon states. The ap-
pearance of such coherent effects is possible because of
the quasi-dispersionless character of the strongly coupled
LO phonons [39], assuring LO phonon-induced dephasing
times much longer than any other relevant process.

Thus, there are two incompatible concepts: according
to the coherent polaron idea, the carrier–LO phonon in-
teraction leads to the reconstruction of the spectrum and
to the formation of hybrid states. In this picture, the in-
teraction with phonons induces coherent oscillations be-
tween the excited state and the ground state accompanied
by a phonon [21,39]. On the contrary, the LO phonon-
induced relaxation [30,31] assumes a non-invertible tran-
sition from the excited state to the ground state, after
which the final state dissolves in the phonon continuum.
In this paper we re-examine this issue theoretically by in-
troducing the system description in the basis of polaron
states including, by definition, the coherent LO phonon
effects. As the carrier–LO phonon Hamiltonian is diago-
nal in the new basis, there is no channel for the purely
LO phonon relaxation processes, which is consistent with
the coherent polaron picture found in the FIR experi-
ments. However, two-phonon processes including acous-
tical phonons (which makes them incoherent by providing
a broad, weakly coupled continuum) take place on the
timescale of tens of picoseconds, in agreement with the
relaxation experiments [30,31].

Introducing the canonical transformation to the pola-
ronic basis, we reproduce the earlier numerical results [21]
in the analytical form. This approach not only facilitates
the interpretation of the results but also is a good start-
ing point for the quantitative description of the relaxation
phenomena. It leads to a uniform approach to both LO–
LA and LO–TA phonon processes, generalizing the bot-
tleneck mechanism [29] to the two-phonon case and ex-
plaining the different nature of the anharmonicity-induced
relaxation (no bottleneck). Another advantage is the fea-
sibility of taking more exciton levels into account while
discussing the excitonic polaron spectrum (as compared
to the numerical study [38]) and describing the “shell ef-
fects” in the exciton-phonon resonances.

We address also another phenomenon related to the
phonon-induced coherence loss. The recent time-resolved
single-dot experiment [19] showed a partial decay of the



L. Jacak et al.: Coherent and incoherent phonon processes in artificial atoms 321

initial signal coherence on a picosecond scale. The coher-
ence loss was then stopped at a relatively high, tempera-
ture dependent level, with a subsequent exponential decay
limited by the exciton lifetime (∼ 1 ns) at low tempera-
tures. Such a behavior of the system polarization after an
infinitely short exciting pulse was theoretically accounted
for in the single-state (independent boson) model within
the linear response regime [35] and then generalized to
higher orders and to sequences of pulses [40]. We show
that this partial coherence loss is a manifestation of a gen-
eral dressing phenomenon, where the lattice reaction and
formation of the coherent phonon cloud is a slow process
following a fast (non-adiabatic) carrier excitation. Unlike
the earlier model [35], the present description sacrifices ex-
act solvability in order to include higher excitonic states
(non-adiabatic effects).

It should be stressed that the presented model, al-
though reasonable for the description of the essential ef-
fects, does not account for the full complexity of the
quantum dot structure and the related phonon modes.
Real dots have irregular shape, inhomogeneous composi-
tion [22] and complicated strain distribution [7,23]. More-
over, apart from the bulk GaAs phonon modes, other
modes may appear, e.g. surface ones [41]. Another lim-
itation of the presented approach is related to neglecting
multiple-phonon processes (except for the essential LO–
LA and LO–TA ones). This restricts the applicability of
the results to relatively low temperatures (approximately
below 100 K for GaAs material parameters). A more ex-
act description should include e.g. the elastic phonon pro-
cesses (exciton-phonon collisions) which also contribute to
exciton decoherence [42].

The paper is organized as follows. Section 2 introduces
the model of the system to be discussed. In Section 3 we
analyze the polaron spectra for an electron and an exciton
in a InAs/GaAs quantum dot. Section 4 contains the dis-
cussion of the relaxation rates. The phonon dressing issue
is addressed in Section 5. The final Section 6 contains the
conclusions.

2 The model

We will consider the system consisting of a single carrier
or one interacting electron-hole pair localized in a dot, de-
scribed in the effective mass approximation. The system
is placed in a magnetic field oriented in the growth di-
rection. We will assume that the confinement potential is
harmonic, isotropic or weakly anisotropic in the dot plane
(xy) and much stronger in the growth direction (z). In
spite of the complicated dot structure the simple harmonic
approximation proves to be very accurate [43]. Thus, the
single carrier Hamiltonian for the electron (i = e) or hole
(i = h) may be written in the coordinate representation

Hi = − �
2
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2
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2
i r2

i⊥

+
�ωc,i

2

(
−i

∂

∂ϕi

)
+ U (i)(zi) + W (i)(ri⊥), (1)

where ri⊥ = ri(cosϕi, sin ϕi) is the projection of the elec-
tron/hole position on the xy plane, ω2

i = ω2
0,i + ω2

c,i/4,
ωc,i = eB/mi (cyclotron frequency) and U (i)(zi) =
1
2miω

2
z,iz

2
i , ωz,i � ω0,i. The last term in (1) describes

the weak anisotropy of the confining potential,

W (i)(ri⊥) =
λ

2
miω

2
0,ir

2
i⊥ cos 2ϕi. (2)

The Coulomb interaction between the carriers is de-
scribed by

HC = − e2

4πε0εs

1
|re − rh| · (3)

Three branches of phonons, LO, LA and TA, will be in-
cluded with the Hamiltonian given by

Hph =
∑
s,k

�ωs(k)b†s,kbs,k, (4)

where s denotes the phonon branch (s = o for LO, s = l
for LA and s = t for TA) and ωs(k) are the corresponding
frequencies. The electrons and holes interact with the LO
phonons by the polar coupling, described by the Fröhlich
Hamiltonian

H
(i)
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N
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k

e
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)
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where i = e, h, v is the volume of the crystal cell and
ε̃ = (1/ε∞ − 1/εs)−1 is the effective dielectric constant
(“−” for electrons, “+” for holes).

Both types of carriers interact also with the LA
phonons via the deformation potential coupling, as de-
scribed by the Hamiltonian

H
(i)
DP =

1√
N

∑
k

σi

√
�k

2�vcl

(
bl,q + b†l,−q

)
eik·ri , i = e, h,

(6)

where σi is the deformation potential constant for elec-
trons or holes, � is the crystal density, cl is the speed of
longitudinal sound.

In addition, the anharmonic mechanism for the LO
phonon decay into a TA phonon and another LO phonon
(the most important channel in GaAs bulk [44,45]) will
be included,

Hanh =
∑
q,k

W (k,q)b†o,kbo,k−q

(
bt,q + b†t,−q

)
+ h.c. (7)

3 Coherent LO phonon effects

In this section we study the spectrum of the system com-
posed of the confined carriers and the LO phonons. The
LO phonon spectrum is characterized by a gap which
is comparable to the carrier excitation energy and by a
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Table 1. The GaAs material parameters used in the calcula-
tions (after [7,46,47]).

Electron mass me 0.067m0

Hole mass mh 0.62m0

Static dielectric constant εs 13.2

High-frequency dielectric constant ε∞ 10.9

Optical phonon energy at k = 0 �Ω0 36 meV

Longitudinal sound speed cl 5150 m/s

Transversal sound speed ct 2850 m/s

Deformation potential for electrons σe 6 eV

Density � 5360 kg/m3

very weak dispersion. Therefore, the carrier–LO phonon
interaction is always in the strong coupling regime, which
results in coherent carrier-phonon dynamics, instead of
phonon-induced incoherent transitions [21,39]. Hence, if
sufficiently short timescales are involved, the incoherent
effects induced by the LO phonon dispersion (character-
ized by 100 ps timescale, see Sect. 5) may be neglected.
In our description we assume dispersionless LO phonons,
ωo(k) = Ω. It may be shown that in the case of suffi-
ciently strongly coupled LO phonon band of narrow but
finite width the spectrum has the same properties [37,39].

We will refer our quantitative results to an InAs/GaAs
self-assembled quantum dot. The electron and hole ef-
fective masses for the stretched InAs become close to
the GaAs values [7]. We assume me = 0.067m0, mh =
0.62m0 [46]. The single-carrier excitation energies �ω0,i

depend on the detailed microscopic dot structure which is
usually not exactly known. We assume that at zero mag-
netic field the noninteracting electron and hole wavefunc-
tions should be the same, hence ω0,h/ω0,e = me/mh. This
is not necessarily the case since the potential walls at the
dot boundary are not infinite and the carries are influ-
enced by nonuniform composition and stress in different
ways. Nevertheless, without any additional knowledge on
the dot stoichiometry and stress distribution this seems
a reasonable choice. The other material parameters are
collected in Table 1.

Since the confinement in the z-direction is very strong,
we will assume that the carriers are always in the ground
state with respect to the dynamics in this direction.

3.1 Single carrier polaron states

Let us start with the simplest case of a single electron in
the dot. The eigenstates of the Hamiltonian He (Eq. (1))
in the isotropic limit (i.e. neglecting W (r⊥)) are the
Fock-Darwin states (for a review, see e.g. [6]). The dot
anisotropy (described by Eq. (2)) may be included per-
turbatively.

The electron–LO phonon Hamiltonian, expressed in
the occupation number representation in the basis of the

eigenstates of (1) reads

He−LO = He + HLO + H
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with the electron–LO phonon interaction functions:
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where the form-factors are
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where lB =
√

�/(meωe) and lz =
√

�/(meωz,e) are the
confinement lengths in lateral (xy) and z-direction and
gnn′ are certain functions (polynomial in k⊥ [48]). The es-
sential feature of the coupling functions are the exponents
responsible for the bottleneck effect, limiting effectively
the carrier–phonon interaction to the phonons with wave-
lengths not much shorter than the dot size.

The spectrum of the polaron may be found using
the canonical transformation introduced by Davydov and
Pestryakov [49]. The details of the diagonalization proce-
dure for confined states are given elsewhere [48,50]. The
main idea is to write the Hamiltonian in terms of polaron
operators, defined as

αν = eSaνe−S, βo,k = eSbo,ke−S,

with the anti-hermitian operator

S =
∑

n,n′,k

F e−LO(k)
En′ − En + �Ω

a†
nan′(bo,k − b†o,−k). (12)

The polaron energies En are found from the equation

En = εn −
∑
n′

Jnn′

En′ − En + �Ω
, (13)

where

Jnn′ =
1
N

∑
k

|F e−LO
nn′ (k)|2.

Neglecting residual multi-polaron and multi-phonon inter-
action terms [49], the Hamiltonian (8) attains a diagonal
form,

He−LO =
∑

n

Enα†
nαn + �Ω

∑
k

β†
o,kβo,k. (14)

The solution of the equation (13), restricted to the three
lowest states, is presented in the Figure 1 and compared to
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Fig. 1. Polaron spectrum for a weakly elliptical quantum dot
in the presence of magnetic field for the dot parameters fitted
to the experimental data of reference [21]: �ω0,e = 57.8 meV,
λ = 0.122. The polaron levels (solid lines) are compared to the
levels obtained without non-diagonal (non-adiabatic) Fröhlich
coupling (dashed lines) and to the experimental data (dots).

the experimental data [21]. The most interesting features
on this plot are level anti-crossings which appear when a
ground level plus one or more LO phonon energy is degen-
erate with an excited level. The Fröhlich interaction lifts
this degeneracy leading to the anti-crossing effect. The
analytical method presented above accounts for the one-
phonon resonances, while the two-phonon resonance is a
higher order effect [21].

The diagonalization of the Hamiltonian He−LO can
also be performed numerically [48]. The results of the ex-
act numerical diagonalization confirm the picture found
by the Davydov method and account also for the second-
order resonance.

3.2 Excitonic polaron

The exciton states are found by diagonalizing the
Hamiltonian

HX = He + Hh + HC, (15)

where the components are given by equations (1, 3). We
restrict ourselves to the case of a cylindrically symmetric
dot (λ = 0).

The exciton energies for a quantum dot with �ω0,e =
60 meV for B = 0 are shown in Figure 2. For a cylin-
drical dot, the total orbital momentum M of the inter-
acting carrier pair is a good quantum number which is
used to label the levels; within one value of M the levels
are numbered by another quantum number n = 0, 1, ...
The dominant contribution to the lowest excited states of
the exciton comes from the excited hole states, while the
electron wavefunction is only slightly modified (Fig. 3).
Therefore, the shell structure, originating from the degen-
eracy of the hole Fock–Darwin levels, is clearly visible in
the lower part of the spectrum: the non-degenerate S = 0
shell consists of the M = 0, n = 0 state, the doubly-
degenerate S = 1 shell is formed by the M = ±1, n = 0
states, and so on, all the levels with 2n + |M | = S form
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Fig. 2. The spectrum of the exciton in the quantum dot at
B = 0.
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Fig. 3. Electron (solid lines) and hole (dashed lines) probabil-
ity densities compared to the ground state probability density
for a noninteracting particle (dotted lines).
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Fig. 4. Exciton spectrum in magnetic field. Dashed line shows
the energy ε0 + �Ω, crossing the S = 3 shell.

the shell S with (S+1)–fold degeneracy. This exciton shell
structure appears also for more realistic modeling of the
dot confinement [43] and is known to modify the optical
spectra [51]. However, unlike in the single carrier case, the
shells are not equidistant due to the decreasing Coulomb
energy gain: the energy separation decreases, like in the
atomic shell structure.

The evolution of the lowest levels with growing mag-
netic field is shown in Figure 4. The degeneracy of the
levels with M �= 0 is lifted and the shells become split
according to the angular momentum of each state, but for
weak fields the shell structure of the lowest shells is still
preserved and the levels remain closely grouped. The rel-
atively slow evolution of the lowest exciton levels, formed
mostly by exciting the hole, is due to the large hole mass.

The exciton wavefunctions resulting from the numeri-
cal diagonalization may be decomposed in the form

Ψν(re, rh) =
∑

ν

cν
nmΨn(re)Ψm(rh), (16)

where Ψn(r) are the wavefunctions of the noninteract-
ing particles (which have the same form for electrons
and holes, as discussed above) and the short-hand sym-
bols n, m, ν comprise the whole set of relevant quan-
tum numbers.

The carrier–LO phonon Hamiltonian,

HX−LO = HX + H
(e)
F + H

(h)
F + HLO

(Eqs. (15, 5) and the LO part of Eq. (4)), may be written
in the basis of the excitonic states (16) as
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where a†
ν , aν are the excitonic creation and annihilation

operators. The exciton–LO phonon coupling function is
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Fig. 5. The excitonic polaron levels at B = 0 (solid lines)
and the bare exciton levels (dotted lines). For comparison, the
results of the adiabatic (independent-boson) calculations are
shown (dashed lines). The levels are grouped by the angular
momentum M .

where the form-factors Fnn′(k) are given by equation (10).
The Hamiltonian (17) is formally identical to that

of a single electron (8) and may be diagonalized by the
Davydov method, leading to the diagonal form in terms
of the polaronic and modified phononic operators αν , α†

ν

and βo,k, β†
o,k,

HX−LO =
∑

ν

Eνα†
ναν + �Ω

∑
k

β†
o,kβo,k. (19)

The polaron energy levels Eν at B = 0 are shown in Fig-
ure 5. In the description of the carrier–phonon interaction
it is often assumed that the non-diagonal coupling terms,
Fνν′(k) for ν �= ν′, may be neglected. This is equivalent
to neglecting the possibility of phonon-induced transitions
between the carrier states, i.e. to the adiabaticity of the
lattice dynamics with respect to the presumably much
faster carrier dynamics. The resulting model is known as
the independent boson model [24]. Following reference [36]
we call this approach adiabatic approximation. In order to
compare the accuracy of various approaches, in Figure 5
the polaron levels are compared to the bare electron levels
and to the values obtained in the adiabatic (independent
boson) approximation. As expected, the adiabatic shift
for each level is very small due to the charge cancellation.
Nevertheless the total shift amounts to a few meV, which
is comparable to the energy shift of a confined excess elec-
tron [50]. Therefore, it is clear that a quantitatively correct
description of polaronic effects for the charge-neutral ex-
citon requires including the coupling to the higher levels,
i.e. the virtual transitions due to the non-adiabaticity of
carrier-phonon interaction.

In the non-resonant case the polaron energy
shift (Eq. (13)) is approximated by the usual second-
order perturbative correction. Each of the contributions
on the right-hand side contains a carrier-phonon interac-
tion matrix element with another state. Comparison be-
tween these contributions reveals the accuracy of the in-
dependent boson model (only the “diagonal” term) or of
any calculation restricted to a certain subset of levels. Fig-
ure 6 shows these contributions to the ground level shift
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Fig. 6. Contributions to the second order perturbative cor-
rection for the ground level energy. The radius of each bubble
is proportional to the term involving the matrix element of
the carrier-phonon interaction between the ground state and
another state, represented by the position of the bubble (cf.
Fig. 2).

from higher excitonic levels. The large contribution from
the excited states is favored not only by orthogonality
between the electron and hole wavefunctions (minimiz-
ing the charge cancellation effects) but also by the small
inter-shell distance (a few times smaller than for a single
electron).

An interesting feature that can be noticed in Figure 5 is
the resonant energy level splitting for certain levels, analo-
gous to the single-electron case discussed above. In the ex-
citonic case, this effect has been discussed for the first time
in reference [38]. For the dot parameters used here, the en-
ergy of the M = 1, n = 1 level exceeds the ground level
energy by approximately the LO phonon energy, leading
to a split of the upper of the levels. In view of the rela-
tively dense exciton level distribution, the appearance of
such anti-crossings in the spectrum of a typical dot should
be a rule rather than an exception. An interesting feature,
emerging from the grouping of the exciton levels in shells,
is the shell nature of the phonon resonances: all the levels
in the shell are split.

In view of the slow evolution of the spectrum with
magnetic field and the preservation of the shell structure,
the resonances found at B = 0 can be expected to ap-
pear in a wide range of magnetic fields. Figure 7a shows
the evolution of the four lowest shells with magnetic field.
The shells S = 0, 1, 2 are only shifted down, while the
shell S = 3 is split. To analyze the nature of this split, in
Figure 7b we show two levels (M = +1, +3) of this reso-
nant shell in a wide range of the magnetic fields. Although
the polaron levels are strongly affected by resonances with
many low-lying states at strong fields, the general picture
is clear. The levels avoid crossing with the energy of the
ground state plus one LO phonon, ε0 + �Ω. The typical
anti-crossing structure is exhibited by the M = 3 state
(dashed line) near B = −20 T. The other state (M = 1,
solid line) evolves in a much more complicated way which
is due to the fact that without phonon interaction it is al-
most parallel to the ε0 +�Ω level. Two anti-crossings may
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Fig. 7. (a) The spectrum of the excitonic polaron. (b) The
structure of the resonant (S = 3) shell: the polaronic levels for
M = 1 (solid line) and M = 2 (dashed line) compared to the
shifted unperturbed levels (dotted lines).

be traced around B = −50 T and around B = 100 T.
(The bare levels in this figure are shifted to account for
the non-resonant interaction with other shells.)

4 Incoherent effects – polaron relaxation

The Davydov transformation allows for a convenient de-
scription of the relaxation processes, including the coher-
ent polaronic effects. Although the quantitative estima-
tions will be specified to the single-electron relaxation,
the method is general in view of the formal similarity of
the Hamiltonians (1) and (17).

The Hamiltonian describing the interaction between
the electron and acoustical phonons, equation (6), has the
second quantization form

He
DP =

1√
N

∑
n,n′,k

F e−LA
nn′ (k)a†

nan′
(
bl,k + b†l,−k

)
, (20)

where

F e−LA
nn′ (k) = σe

√
�k

2�vcl
Fnn′(k).

Together with the Hamiltonian describing the phonon an-
harmonism (Eq. (7)), this may be written in the polaron
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basis as

He−ac =
1√
N

∑
nn′,q

F e−LA
nn′ (q)α†

nαn′(bl,q + b†l,−q)

+
∑

k1,k2,q

W (k,q)β†
o,kβo,k−q(bt,q + b†t,−q)

+
∑

nn′,q,k,s

W̃
(s)
nn′(q,k)α†

nαn′βo,k(bs,q + b†s,q) + h.c., (21)

where s runs over the acoustic branches (s = l, t) and

W̃
(t)
nn′(q,k) = − 1√

N

F e−LO
nn′ (k + q)W (k + q,q)

En′ − En + �Ω
, (22)

W̃
(l)
nn′(q,k) =

1
N

∑
n′′

[
F e−LO

n′′n′ (k)F e−LA
nn′′ (q)

En′ − En′′ + �Ω
− F e−LO

nn′′ (k)F e−LA
n′′n′ (q)

En′′ − En + �Ω

]
.

(23)

The first term in (21) describes the polaron–LA phonon in-
teraction. Because of the bottleneck effect [29,28] it could
lead to real transitions only for energy level distance not
exceeding a few meV, which is not the case for a self-
assembled dot. The second term describes anharmonic in-
teraction of LO phonons with TA phonons, whereas the
last term describes the two-phonon relaxation of the po-
laron. The LO–TA anharmonism-induced relaxation chan-
nel corresponds to equation (22) while the LO–LA channel
to equation (23). Both these channels lead to a change of
the polaron state accompanied by the creation or annihi-
lation of a pair of phonons: the optical and the acoustical
one. At low temperatures only emission process is possi-
ble with the probability given by (according to the Fermi
golden rule)

w
(s)
nn′(q,k) =

2π

�
|W̃ (s)(n, n′,q,k)|2δ(En − En′ − �Ω − �ωs(q)).

The relaxation probability is given by the sum

wn→n′ =
∑
k,q,s

w
(s)
nn′(q,k).

The relaxation probability via the two-phonon LO–TA
channel may be written as [48,50]

w
(t)
n→n′ =

2
π

Jnn′γ2qtv

�4c3
t

, (24)

where qt = (En−En′ −�Ω)/�ct (limited by the maximum
frequency for TA phonons) and the value of γ may be
found by fitting to the experimental data [48,50].

Let us now estimate the polaron relaxation rate from
the first excited state to the ground state. The energy con-
servation restricts this process to a certain energy range
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Fig. 8. (a) Magneto–polaron relaxation time from the upper
branch of the first excited level with respect to the LO–LA
emission (T = 0). (b) Relaxation times with respect to the LO–
TA anharmonism induced channel and to the LO–LA channel
for various dots at B = 0. Note that, when the relaxation
times from this branch are getting very short, the other polaron
branch becomes stable.

over the LO phonon energy, determined by the maximum
energy of the TA phonon, ∼ 8 meV. Comparing with the
diagram of the spectrum (Fig. 1), one sees that the double
emission process may take place only for the upper branch
of this energy level and only for magnetic fields B > 25 T
(taking into account the actual LO phonon dispersion re-
stricts this process even further [48]). The polaron relax-
ation times obtained in this way are even of order of 10 ps
(but only in the region of very high magnetic fields).

The suppression of the relaxation process at low mag-
netic fields is characteristic of dots with the confinement
energy �ω0,e exceeding the phonon energy �Ω by sev-
eral meV. For larger dots (weaker confinement, �ω0,e <
40 meV) the relaxation channel by the LO–TA phonon
emission becomes allowed. The corresponding relaxation
times are shown in Figure 8b.

Let us note that the anharmonism-induced channel is
not subject to the bottleneck effect since it does not in-
volve the direct carrier–LA phonon coupling.

The LO–LA channel may be responsible for polaron
relaxation in a wider range of magnetic fields due to the
much higher energies of the LA phonons in GaAs (up to
24 meV [47]). The probability of relaxation has the form
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[retaining only the largest terms in W̃
(l)
nn′(q,k)]:

w
(l)
n→n′ =

σ2Jnn′

4π��3c4
l qll2B

Jnn′ , (25)

where ql = (En − En′ − �Ω)/�cl (limited by the upper
frequency limit for LA phonons) and

Jnn′ = l2B

∫
d3q|Fn′n′(q) −Fnn(q)|2δ(q − ql).

The polaron relaxation time from the upper branch of
the first excited state with respect to the LO–LA chan-
nel for various magnetic fields and dot sizes is plotted
in Figure 8a. It is clear that for the self-assembled dot
discussed here, with �ω0,e � 58 meV, the initial state is
very long-living for any practically attainable magnetic
field. This is due to the two-phonon bottleneck mecha-
nism which strongly suppresses the relaxation unless the
polaron energy difference approaches the LO phonon en-
ergy so that the required LA phonon is a long-wavelength
one.

It is essential to note the fundamental difference be-
tween the electron and polaron spectrum: in the former
case there is only one spectral branch for each state and
it crosses the LO phonon energy. On the contrary, in the
polaron case only one of the two spectral branches may
be close to this resonant energy while the other is dis-
tant enough to guarantee more stability (cf. Fig. 1). Even
at non-zero temperatures, when absorption processes are
possible, it is only in the vicinity of the resonance that
both branches are affected by the allowed relaxation pro-
cesses. A rather unexpected effect is also related to the fact
that increasing the Fröhlich electron–LO phonon coupling
broadens the anti-crossing and thus reduces relaxation
rates by strengthening the bottleneck mechanism [48,50].

The efficiency of the bottleneck mechanism at low
magnetic fields depends on the dot size: the relaxation
time becomes short when the confinement energy is close
to the resonance with LO phonons (Fig. 8b).

The above relaxation times have been obtained in the
zero temperature limit. Due to high energy of optical
phonons, the occupation of LO phonon states may be ne-
glected up to temperatures of order of 100 K. The tem-
perature dependence of the phonon emission processes, en-
tering through acoustical phonon occupation factors, may
be qualitatively inferred from the structure of the polaron
spectrum and the requirement of energy conservation. As
one of the polaron branches is always separated from the
LO phonon resonance by the anticrossing half-width of a
few meV, the population of the phonon states involved in
the process becomes important only at temperatures of
a few tens of kelvin. At lower temperatures, the unstable
polaron branch may decay faster but the stable one is very
slightly affected.

5 Exciton dressing

Any optical experiment or optical control of carrier states
in a quantum dot is based on the coupling between the

carriers and the electric field of the electromagnetic wave.
By using high-power laser pulses this coupling can be
made strong, leading to fast excitation of confined exci-
tons. However, this coupling involves pure electronic de-
grees of freedom, inducing only carrier transitions which
must then be followed by lattice relaxation to the poten-
tial minimum corresponding to the newly created charge
state. A similar effect leads to the well-known Franck-
Condon shift in the optical spectra [52]. In the case of
the optical exciton creation, the initial lattice configura-
tion corresponds to zero polarization field and zero de-
formation, while the eigenstate of the interacting system
involves some lattice polarization (LO phonon field) and
some deformation (LA phonon field). Thus, the process
of the lattice relaxation may be viewed as the formation
of the phonon dressing around the confined exciton. Re-
laxing the lattice to the new minimum may be achieved
by dissipating the excess energy e.g. by phonon–phonon or
phonon–carrier scattering. However, as we show below, the
energy dissipation may be provided by radiating phonons
out of the dot area, for which the phonon dispersion (non-
vanishing group velocity) is of major importance, govern-
ing the dressing times.

Let us neglect the LO–TA anharmonic interaction and
consider the Hamiltonian

H = HX−LO + Hac + H
(e)
DP + H

(h)
DP, (26)

where the components are given by equations (17, 6) and
the LA part of (4). We assume linear LA phonon disper-
sion and introduce a phenomenological model of the LO
phonon dispersion, ωo(k) = Ω0 − µk2. Fitting to the ex-
perimental data [47] yields µ ≈ 0.06 meV nm2, although
this estimation might be affected by large uncertainty due
to the extremely weak dispersion near k = 0 compared to
the experimental accuracy.

The dressing process may be conveniently described
using the basis of perturbative eigenstates of the Hamil-
tonian (26), obtained by the diagonalizing unitary opera-
tor eS. (For LO phonons this is the polaronic basis and S is
given by (12), neglecting higher order corrections.) After
the instantaneous carrier excitation (ultra-non-adiabatic
limit), the system is in the bare exciton state. Let us as-
sume, for simplicity, that it is the ground state. To the
lowest order, the creation operator for this state may be
expressed in the new basis (in the non-resonant case) as

a†
0 = eSα†

0e
−S

=


1 − 1

2N

∑
n,s,k

|φ(s)
0n (k)|2(2β†

s,kβs,k + 1)


α†

0

+
1√
N

∑
n,s,k

φ
(s)∗
0n (k)α†

n

(
β†

s,k + βs,−k

)
,

where s denotes the phonon branch (LO or LA) and

φ
(s)
0n (k) =

F
(s)
0n (k)

E0 − En − �ωs(k)
,
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where F
(l)
0n (k) ≡ F

(X−LO)
0n (k) is given by (18) and F

(a)
0n (k)

is the corresponding quantity for LA phonons.
The time evolution under the diagonalized

Hamiltonian is

α†
n(t) = α†

nei
E0
�

t, β†
s,k(t) = β†

s,keiωs(k)t.

Using these formulae, it is easy to write down the exciton
retarded Green’s function for t > 0,

Gr(t) = 〈[a0(t), a
†
0(0)]〉 = 〈a0(t)a

†
0(0)〉 (27)

=


1 − 1

N

∑
n,s,k

|φ(s)
0n (k)|2(2ns,k + 1)


 ei

E0
�

t

+
1
N

∑
n,s,k

ns,k|φ(s)
0n (k)|2e−i(En/�−ωs(k))t

+
1
N

∑
n,s,k

(ns,k + 1)|φ(s)
n0 (k)|2e−i(En/�+ωs(k))t

where 〈·〉 denotes the thermal average. The averaging is
done only with respect to the phonon states and exciton
vacuum [53], hence the equality of the retarded Green’s
function to the correlation function for t > 0. It should be
noted that the perturbative treatment is valid only when
the above Green’s function remains close to one. For a
fixed strength of interaction this requires a low enough
temperature (in practice, for a typical InAs/GaAs dot,
this means T < 100 K).

The retarded Green’s function is directly related to
the system susceptibility in the linear response regime and
gives the system response to an instantaneous (δ-shaped)
light pulse, generalizing the results of reference [35] to the
many-level model. However, it may also be interpreted in
terms of the overlap between the initial system state (a
bare exciton) and the state after time t, thus describing
an inherent system dynamics, independent of the experi-
mental techniques.

In order to explain the time evolution of this func-
tion, let us remember that the functions φ

(s)
nn′(k) con-

tain the form-factors (10), effectively selecting a certain
wavenumber range k

(s)
0 ± 1

2∆k(s), centered around k
(s)
0

for each branch of phonons (∆k(s) ∼ 1/l, where l is the
dot size). This corresponds to a certain frequency range
ω

(s)
0 ± 1

2∆ω(s), around a central frequency ω
(s)
0 . The phases

that enter in the summation in (27) at the time t spread
effectively over the angle range ω

(s)
0 t± 1

2∆ω(s)t. When this
phase spreading reaches 2π, i.e. for t ∼ 2π/∆ω(s), the last
two terms in (27) become small. The asymptotic value of
the Green’s function is

|Gr(t = +∞)| = 1 − 1
N

∑
k,n,s

|φ(s)
0n (k)|2(2ns,k + 1).

The value of the Green’s function may be related directly
to the fidelity of an operation performed by the ultra-
fast pulse on the excitonic states of a single quantum dot
(a one-qubit operation for the quantum gate proposal of

Ref. [16]). Denoting the reduced density matrix of the
qubit by �C(t) and the evolution operator for the undis-
turbed qubit by U(t), and assuming that the initial state
is |0〉 (no exciton), one defines the fidelity as the over-
lap between the desired final state and the actual state
described by �C(t),

F = 1 − δ = 〈0|U †(t)�C(t)U(t)|0〉·

If the operation is a rotation by the angle α in the two-
dimensional space of the qubit, then the fidelity loss δ may
be expressed as

δ(t) =
1
2

sin2 2α

[
1 − Re

(
Gr(t)eiEt

)]
.

Hence, the decrease of the Green’s function is related to
the fidelity loss of the excitonic qubit, i.e. it is a measure
of decoherence of the qubit state after fast gating.

The decoherence time depends on the phonon dis-
persion (the frequency range ∆ω(s)) and weakly changes
with temperature. For the acoustical phonons, it is τ ∼
2πl/c ∼ 1 ps (Fig. 9a). For the nearly dispersionless opti-
cal phonons, the dynamics is dominated by slowly vanish-
ing coherent phonon beats (Figs. 9b and 9c). However, this
strongly oscillatory dynamics may not be noticeable in a
real experiment, where probing the system takes some fi-
nite time and the sub-picosecond oscillations are averaged
out. Moreover, it is known that the anharmonic LO–TA
interaction [44,45] (see Sect. 4, not included in the present
description) acts on much shorter timescales and may be
expected to considerably shorten this time.

Both for optical and acoustical phonons the time varies
with the dot size. In the case of acoustical phonons the
position of the final plateau, i.e. the asymptotic coherence
loss at t → ∞, critically depends on temperature (Fig. 9a).

The long-time coherence of the carrier–LO phonon in-
teraction supports the assumption that the Fröhlich in-
teraction should be treated as a coherent effect [21,50]. It
should be remarked that the 100 ps time obtained here
is merely a rough estimation, due to the uncertain LO
dispersion fitting.

It is possible to see directly that the described pro-
cess consists in the formation of a coherent (i.e. with non-
vanishing mean displacement) phonon field corresponding
to the classical lattice deformation around the confined
charge. Let us consider the mean lattice displacement cor-
responding to the branch s at the point r after time t,

〈us(r, t)〉 =
1
N

∑
k

√
N�

2�vωs(k)
k
k

eik·r

×
〈
a0

(
bs,ke−iωs(k)t + b†s,−keiωs(k)t

)
a†
0

〉
.
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Fig. 9. Dressing-induced decoherence of the exciton due to
LA phonons (a) and due to LO phonons: oscillations with LO
phonon frequency (b) decay on a very long timescale (c).

Transforming to the diagonalizing basis, as previously, one
obtains in the lowest order

〈us(r, t)〉 =
1
N

∑
k

√
�

2�vωs(k)

× k
k

eik·r2Re
[
φs∗

00(k)
(
1 − eiωs(k)t

)]
.

After a sufficiently long time the oscillating term averages
to zero (around r = 0) and a time-independent displace-
ment field is formed. Figure 10 shows the mean lattice
deformation due to the deformation potential coupling on
the dot axis, r = (0, 0, z), at various instances of time.
A simple and intuitive picture emerges: formation of the
lattice deformation, corresponding to the displaced equi-
librium, is accompanied by emitting a phonon packet that
carries the excess energy away from the dot with the speed
of sound.
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Fig. 10. Time evolution of the mean lattice deformation at the
dot axis (x = y = 0). The time-independent deformation, cor-
responding to the coherent phonon dressing, is formed around
z = 0 (i.e. in the dot area) within ≈ 1 ps. This is accompanied
by emission of a phonon packet carrying away the excess en-
ergy at the speed of sound, seen on the plot as the ridge and
the valley with growing distance from the dot.

6 Conclusions

In this paper we reviewed various manifestations of the
carrier–phonon interaction in quantum dots. As com-
pared to the bulk case, the nanometer scale of confine-
ment leads to essentially different phonon phenomena.
The energy scale of the confined carriers is close to the
resonance with optical phonons, hence the carrier–LO
phonon interaction is in the strong coupling regime lead-
ing to considerable modification of the carrier spectrum
i.e. to the polaron effect. The Fröhlich interaction for con-
fined carriers is enhanced by non-adiabatic effects. In con-
trast to these increased coherent effects, the incoherent
carrier–acoustical phonon interaction is diminished due to
the large inter-level distance compared to the maximum
acoustical phonon energy and to the confinement-related
bottleneck effect (size incommensurability). These effects
are magnified by wide polaron anti-crossings in the spec-
trum induced by the increased Fröhlich coupling and lead
to the relaxation times of tens of ps (at least one order of
magnitude longer than in bulk).

In view of this essential difference with respect to bulk
carriers, an alternative analogy may be proposed, where
the confined carrier properties are associated with those
of an atom. It is clear that, although this “artificial atom”
idea may be useful for the description of the basic spec-
tral properties of confined carriers in semiconductors, it
may also be strongly misleading. In fact, the analogy with
atomic physics is limited by the existence of the upper
bound of the phonon spectrum and the much lower speed
of sound, as compared to light. As a result, for the energy
scales relevant to the “artificial atoms”, the importance of
short-wavelength phonons grows which leads to the geo-
metrical suppression (bottleneck) effects.

A completely new element in the semiconductor quan-
tum dot physics is the existence of the nearly dispersion-
less LO phonon branch with the spectrum lying above a
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gap comparable to the carrier excitation energies. A boson
field of this kind has no analogue in the optical properties
of atoms. The interaction with the LO phonons leads to
the essential modification of the spectrum: a manifestation
of the coherent character of the phenomenon.

The interplay between the coherent and incoherent
phonon interaction conforms with the experimental data.
The coherent effects related to the LO phonons are re-
sponsible for the structure of the spectrum (shifts and
anticrossings). The quantitative results agree with the ex-
periment (within the one-phonon approximation). Since
the idea of purely LO phonon relaxation contradicts the
obviously coherent character of the corresponding channel
of interaction, the correct description requires employing
mixed processes, involving acoustical phonons. Although
these processes are of higher order in the weak carrier–
phonon coupling, the relaxation times calculated within
this approach agree with the experimental data [30,31].
Large mixing of carrier and phonon states near the LO
phonon resonances may be essential for explaning the in-
crease of the observed Huang-Rhys parameter for absorp-
tion [33,34] although quantitative comparison is still to be
done. Some experimental effects, like the observed cou-
pling to zone edge phonons [30], are clearly outside the
range of our model.

Another source of decoherence are lattice relaxation
processes following a fast (sub-picosecond) optical carrier
excitation in a quantum dot. Due to the slow lattice dy-
namics, the fast charge excitation must be followed by a
relaxation process which may be interpreted as formation
of the polarization or deformation dressing around the ex-
citon. Just after the excitation the state of the carrier sub-
system does not correspond to a stationary state of the
whole interacting system which leads to dephasing on a
timescale depending on the effective spectral width of the
coupled phonon continuum. For a typical InAs/GaAs dot
this decoherence time is of order of a picosecond, while the
final degree of the coherence loss strongly depends on tem-
perature and may vary in a wide range. This decoherence
scenario is indeed closely related to the “minimal deco-
herence” idea [54]. This generic effect may be expected in
any ultrafast experiment, the recent coherence measure-
ments [19] being an example. The theoretical model [40]
closely reproducing the actual experiment confirms this
interpretation.

In conclusion, the carrier-phonon interactions in con-
fined semiconductor systems (quantum dots) are mani-
fested by a wide variety of effects, both coherent and
incoherent. There is still much to be done to fully un-
derstand the physics of these phenomena and to assess
their importance for the future technological applications.
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